The 8th International Conference on e-Business (iNCEB2009)
October 28th-30th, 2009

VALUE-BASED PREDICATE FILTERING TECHNIQUE OF XML DOCUMENT

USING ONTOLOGY
Yi Yi Hlaing
University of Computer Studies, Yangon, Myanmar

yeyehlaing@gmail.com
ABSTRACT There are two main contributions in our
proposed system. First, the proposed system provides
the efficient predicate based filtering for XPath
Nowadays, information dissemination queries to get exact matched information. Second, the

applications are very popular and much of the data
exchange over the Internet. XML plays an important
role as a de-facto standard information exchange and
is recommended by W3C. The various XML data
filtering methods have been developed in most web
applications. In this paper, we describe some existing
filtering methods and comparison of the existing
methods. In addition, we developed a new XML
Document filtering system for multiple XPath queries
which is based on ontology. The proposed system
contains three components: path generation, queries
transformation and matching. By using the path
generation component, the user profiles are
generated from DTD and all generated queries are
represented in XPath format. The multiple gueries
which include value-based predicates are
transformed into a single Nondeterministic Finite
Automaton (NFA) based model. On the other hand,
incoming XML document is parsed by SAX parser.
After that, the user profiles of XPath queries are
matched with the incoming XML documents. In
addition, OWL ontology is added to that filtering
process. Therefore, proposed method intends to
provide not only exact matched information but also
semantic matched information for multiple queries.

Index Terms— NFA, Value-based predicates,
Ontology

1. INTRODUCTION

XML filtering mechanisms are very useful for
most internet applications. In such systems, user
profiles are expressed in XML query languages such
as XML-QL, XPath, XQuery and ApproXQL. In this
paper, we focus on user profiles represented in
XPath. We can also classify XML data filtering
methods into Automata-based filtering, Trie-based
filtering, Index-based filtering, Sequence-based
filtering, Twig pattern based filtering, Stack based
filtering, predicate-based filtering and other
approaches. The proposed system uses
Nondeterministic Finite Automaton (NFA)-based
filtering for sharing XPath queries. There are a lot of
ontology-based XML querying methods. Here,
querying and filtering are too much different.
Querying searched in the whole database including
history. Filtering is only matched the current new
data with user requests, We are interested in filtering.

usage of ontology in our proposed system allows
users to extract semantic information from various
forms of XML documents and to be effective to a
large domain application.

The rest of the paper is organized as follows:
Section 2 describes some existing filtering methods
and comparison of the existing methods. In section 3,
we present the architecture of our proposed filtering
system and the main tasks of our system. In section 4,
we explain NFA based model of shared value-based
predicates processing. We explain how to perform
query transformation processes using ontology
reasoning with xml filtering system and some
performance analysis are depicted in section 5.
Finally, section 6 summarizes our work and present
ongoing works.

2. RELATED WORKS AND PROBLEM ISSUES

We now introduce some existing XML filtering
methods. The earliest method called XFilter was
proposed by M. Altinel in [3]. It is a FSM based
approach in which each query is converted into FSM.
YFilter which is presented in [I] is a NFA-based
approach for shared XPath queries. XTrie proposed
in [6] indexes on sequences of elements organized in
a trie the redundant matching. AFilter [4] exploits
prefix and suffix commonalities the set of XPath
queries. XPush [7] proposed the use of a modified
deterministic pushdown automaton to simulate the
execution of XPath filters and can handle
predicates. XSQ [8] exploits the pushdown
transducer to share the atomic predicates. This
technique enables the sharing of numeric and string
constants. Now, Really Simple Syndicate (RSS), an
XML application, semantic information is important
to deliver the user needs. To the best of our
knowledge, the main motivated factors of our works
are the most existing methods cannot enhance the
processing efficiency of value-based predicate and
cannot filter the documents for semantic matched
information. So, our system will solve these
problems and reduce the filtering time as much as
possible. We describe some existing XML filtering
methods and compare the existing methods are
shown in Table 1 and Table 2.

The 8th International Conference on e-Business (iNCEB2009)
October 28th-30th, 2009

Table 1. Some Existing XML Filtering Systems

XML Filtering Query Data Structure Used and Additional
filtering mechanism Language and | characteristics
system nature
XFilter FSM XPath simple Query Index
YFilter NFA/DFA XPath share Stack, Detection of common prefixes
XTrie Subsequence XPath complex Substring indexing, substring sharing, ordered
matching matching
AFilter Stack XPath Exploitation of prefix and suffix commonalities,
lazy techniques
ApproXFilter | Tree, Thesaurus ApproXQL Tree DAG (fully query or extended query)
XPush Push-down XPath High scalability, lazy
automaton
Ontology Twig-pattern with | XPath Tree, Stack, Ontology
based Filter Prefix Path
Streaming, Ontology

Table 2. Comparison of Some Existing Systems

XML Filtering mechanism Accuracy Filtering Time

filtering

system

XFilter Uses FSM Only exact | Slowest of all because of FSM concept and

match result no group queries

YFilter | Transform queries into a single | Only exact | Increase as the number of branches and
NFA by sharing the prefix. Top- | match result queries distinct
down Approach

XTrie Supports tree shaped XPath | Low probability | Good the response time for large number of
expressions containing predicate, | of false positives | queries involving predicates but it is limited

decompose path expressions into | due to | due to the heavy computation of the
several . aggregation sub- | aggregation processes
strings with a
sequence of
labels
AFilter Prefix Caching and Suffix | Only exact | Slower than GFilter if the depth of XML
Clustering , Bottom-up Approach matched result document recursively varied

ApproX | Transform all queries into | Low probability of | Relatively efficient

Filter normalized form, extend them using | false negatives
synonyms, build a DAG parse | may occur due to
document and traverse DAG the normalization

of subscriptions

115

3. ARCHITECTURE OF
FILTERING ENGINE

PROPOSED XML

The overview of proposed system is shown in
Figurel and the main tasks of proposed XML
filtering engine are shown in Figure 2.

Publishers Application
Domain

Filtering Engine

v

XML tags OwWL
Document, Ontology
v
Parsed by NFA based model of A
SAX Transform to
Shared_value based NFA form
predicate
A
A 4 A
Ontology based
filtering XPath
Format
Subscribe
Transformation

Figure 1. Architecture of Proposed XML Filtering
Engine

In the proposed system, DTD is one main input
to generate the XML documents and user profiles.
For XML documents generation, IBM’s XML
Generator is used. In the filtering context, many
queries representing the interests of the user
community are stored and must be checked upon the
arrival of a new document. The basic components of
the proposed system are path generator, XPath parser,
parsing XML document, queries transformation and
matching. The query generator generates random
query strings according to the input DTD. XPath
parser takes queries written in XPath, parses them
and sends the parsed profiles to the filtering engine.
New profiles can be added to a running filtering
engine only when the engine is not actively engaged
in processing a document. The user profiles of XPath
queries are transformed into Nondeterministic Finite
Automaton (NFA) based model for sharing all path
expressions and to enhance the processing efficiency
of vale-based predicate. On the other hand, XML
document is parsed by SAX parser. For building
specific application domain, we applied web
ontology language (OWL) which enables to express

The 8th International Conference on e-Business (iNCEB2009)
October 28th-30th, 2009

116

much richer relationships, thus yielding a much
enhanced inference capability. And it also provides
an XML vocabulary to define classes, properties and
their relationships. Finally, matching XML document
and NFA based model of user profile. Then, the
matched results will be produced to particular users.

User Profile
(XPath)

|

Transform user Profile into NFA
form

!

Transform NFA based model of
shared value based predicate
matching using OWL ontology

|

OWL ontology
for the specific
Application Domain

P .
Document Matching
Match Results

Figure 2. Main tasks of Proposed XML Filtering
Engine
4. NFA-BASED MODEL OF SHARED VALUE-

BASED PREDICATES PROCESSING

In our proposed system, the user profiles of
XPath queries including value-based predicates are
transformed into NFA based model. In order to
perform an efficient execution of value-based
predicates, proposed system separates NFA into
structure matching and value-based predicate
matching. In structure matching, NFA combine all
path queries into a single NFA and share the common
prefixes of the paths. In value-based predicate
matching, NFA identify the common prefix
characters of the operand in the predicate and share
the processing among them.

The execution of the value-based predicate NFA
machine implemented using a hash table. The value-
based predicate NFA considers a single character as
an event and executes the predicate with the event-
driven method. When the XML document arrives at
the filtering engine, XML document is parsed by
SAX parser and generating an event for each
character. The generated event is sent to the handler
and generates transition in the value-based predicate
NFA.

In order to improve the semantic adequacy of the
results of XPath queries into NFA form are
transformed with the help of ontology. This step must
take certain assumptions about the relationships
between the terms defined in the ontology and the

The 8th International Conference on e-Business (iNCEB2009)
October 28th-30th, 2009

structure of XML documents. This mechanism in
general performs two steps. First, it analyses the
original NFA form. Second, it converts the NFA form
into a richer NFA form that embodies ontological
background knowledge which is to append into
structural NFA.

In the matching stage, the value-based predicate
matching is performed until afier the structure
matching has been completed. If the structure
matching aspects are not satisfied, the evaluation of
the remaining predicate matching can be avoided.
And also, when a predicate of a query fails, the
evaluation of the remaining predicates of that query
can be avoided. If the structure matching and the
remaining value-based predicate matching are
satisfied, the query matches the cumrent XML
document. Figure 3 and Figure 4 show the examples
of a structural NFA and a value-based predicate NFA
representing five queries in Table 3.

Table 3. XPath Queries Example

Q1=/dblp/thesis/author[text()="June Brown”]
Q2=/dblp/thesis/author[text()="June Smith”]
Q3=/dblp/thesis/title
Q4=/dblp/thesis/year[text()= “2006”]
Q5=/dblp/thesis/year [text()= “2007"]

author

Q1,Q2

dblp thesis

Q3

Q4.Q5

Figure 3. Structural NFA Example

Figure 4. Value-based Predicate NFA Example

117

5. ONTOLOGY IN PROPOSED MECHANISM

Ontology defines the basic terms and relations
comprising the vocabulary of a topic area as well as
the rules for combining terms and relations to define
extensions to the vocabulary (Neches and colleagues,
1991). OWL is the de-facto standard for ontology
languages and is a W3C recommendation. OWL is an
extension of RDF. OWL provides an XML
vocabulary to define classes, properties and their
relationships [9]. Proposed system applies OWL
language for semantic matched information.
Proposed system performs the query transformation
processes to provide semantic information. The query
transformation processes are shown in Table 4.

Table 4. Query Transformation Algorithm For
Semantic

Input: Xpath queries

Output: Semantic NFA based model

1. Parsing owl ontology classes by OWL API
2. while queries

3. begin

4. if the query node contains in the ontology
classes
then

5. The original query is transformed into

Semantic query

Appending Semantic query into
structural NFA queries

7. endif

8.end

9. return All NFA queries;

6.

Before performing the query transformation,
OWL is parsed by OWL API parser. This parser is a
high level programmatic interface for accessing and
manipulation OWL ontology. Main inputs of the
query transformation processes are OWL ontology
and user profiles of XPath queries. If the query node
is in the ontology class, that query node is
transformed with the subclasses of ontology. In the
matching stage of the system, both the original
queries and transformed queries will be processed.
Then, transformed queries will be appended into
structural NFA. In this way, proposed system can
provide the semantic information for the user queries.

For semantic matched results, we will explain
with the following example. The examples of xml
document and ontology domain are shown in Table 5
and Table 6 respectively. In this example, without
using ontology, there is no matched query although
queries in Table 3 are the semantic matched
information. With ontology, the semantic matched
queries will be output. Therefore, the proposed
system can provide the semantic matched results by
taking the queries transformation. Matched
information from XML Document will be produced.

The 8th International Conference on e-Business (iNCEB2009)
October 28th-30th, 2009

Table 5. XML Document Example

<dblp>
<masterthesis mdate="2002-01-03"
key= “ms/Brown92">
<author>June Brown</author>
<title>... </title>
<year>...<fyear>
<school>... </school>
</masterthesis>
<phdthesis pdate="2002-05-0"
key="ms/John3">
<author>June Smith</author>
<title>... </title>
<year>...</year>
<school>... </school>
</phdthesis>
<dissertation mdate="2002-01-03"
key="ms/Smith92">
<author>Kurt P. Smith</author>
<title>... </title>

</dissertation>
</dblp>

Table 6. OWL Example

<owl:Class rdf:1D="dissertation">
<rdfs:subClassOf>

<owl:Class rdf:1D="thesis"/>
</rdfs:subClassOf>
<rdfs:label>Topic</rdfs:label>
<rdfs:comment>Master Thesis</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="masterthesis">
<rdfs:subClassOf>

<owl:Class rdf:1D="thesis"/>
</rdfs:subClassOf>
<rdfs:label>Topic</rdfs:label>
<rdfs:comment>Master Thesis</rdfs:comment>
</owl:Class>

<owl:Class rdf:1D="phdthesis">
<rdfs:subClassOf>

<owl:Class rdf:1ID="thesis"/>
</rdfs:subClassOf>
<rdfs:label>Topic</rdfs:label>
<rdfs:comment>PhD Thesis</rdfs:comment>
<fowl:Class>

5.1. Dataset Specification

In fact, we are currently developing our proposed
system. Therefore, in this paper, we do not present a
through analysis. Here, we will present only the
results of some experiments. All experiments will
perform on a Windows Vista computer with 2GB of
memory and Pentium Dual CPU 2.16 GHz. All codes
were written in java. Our code was compiled using
Eclipse 3.3 (Europa) with JVM memory 512MB. We
evaluate the performance of proposed system on both
real dataset (DBLP) and synthesized dataset (NITF)
setup, which are described in Table 7. DBLP dataset

[16] is an XML document, including information
about papers, thesis, books and authors. Each paper’s
information is represented as a fragment of the XML
document. DBLP is shallow and wide document.
NITF is a DTD for News Industry Text Format. For
NITF dataset, XML documents are generated from
DTD by using IBM’s XML generator tool. Figure 5
shows the query transformation time of XPath
queries into NFA form for both dataset’s queries. It is
measured on varying the number of queries. Real
dataset's queries take time more than synthesized
dataset's when the number of queries increases.

Table 7. Dataset setup

Dataset Data #of |#of | Max
size Ele | Attr | Dept
men | ibut | h
ts es
NITF.dtd 82KB 123 | 513 | 4.17
DBLP.dtd 8KB 37 23 2.87
DBLP.xmi | 10KB 202 |25 3
DBLP.owl 10KB 174 | 88

Queries Transformation Time
700 +
—50 £
B0 E —o— NITF Queries
putci B ~a—DBLP Queies

100 1000 2000 3000 4000 5000 20000 50000
of Queries

Figure S. Queries Transformation Time
6. CONCLUSION

In this paper, we introduced a new XML
document filtering system for multiple queries, which
is based on ontology for getting semantic
information. Our system intends to provide the exact
matched information and the semantic matched
information of the users’ queries. Later, our filtering
engine’s performance analysis will be presented
comparing with the existing methods. And also, we
will apply the concept of proposed filtering
mechanism in web application such as alerting
services for digital library. Getting how much
approximate, depends on ontology of a specific
application domain. Therefore, our system intends to
construct improved ontology domain to provide the

118

The 8th International Conference on e-Business (iNCEB2009)
October 28th-30th, 2009

more semantic information. We intend to use both
real datasets and synthesized datasets. As parts of our
ongoing work, we are going to show several
performance studies such as efficiency, scalability
and filtering time, how much approximate values and
exact values will be outputs that our proposed
method.

References:

[1] Y. Diao, M. Altinel, M. }. Franklin, H. Zhang,
and P. Fischer, “Path Sharing and Predicate
Evaluation for High-Performance XML Filtering,”
ACM Trans. Database Systems, Vol. 28, Issue 4, pp.
467-516,2003.

[2] C. Chan, P. Felber, M. Garofalakis, and R.
Rastogi, “Efficient Filtering of XML Documents
with XPath Expressions,” In Proc. IEEE Int. Conf.
Data Engineering, pp. 235, 2002.

[3] Mehmet Altinel and Michael J. Franklin. Efficient
Filtering of XML Documents for Selective
Dissemination of Information. In Proceedings of the
26th VLDB Conference, pages 53—64, Cairo, Egypt,
September 2000.

4] K. Selc uk Candan, Wang-Pin Hsiung, Songting
Chen,Jun’ichi Tatemura and Divyakant Agrawal.
AFilter: adaptable XML filtering with prefix-caching
suffix-clustering. In Proceedings of the 32nd VLDB
Conference, pages 559-570, Seoul, Korea, Sept.
2006.

[5] J. Kwon, P. Rao, B. Moon, S. Lee, FiST: scalable
XML document filtering by sequencing twig
patterns, in: Proceedings of the 3ist VLDB
Conference, Trondheim, Norway, 2005, pp. 217-228.

[6] B. Luddscher, P. Mukhopadhyay, Y.
apakonstantinou, A transducer-based XML query
processor, in: Proceedings of the 28th VLDB
Conference, Hong Kong, China, 2002, pp. 227-238.

[71 AK. Gupta, D. Suciu, Stream processing of
XPath queries with predicates, in: Proceedings of
the 2003 ACM-SIGMOD Conference, ACM Press,
San Diego, CA, 2003, pp. 419-430.

[8] T. R. Gruber: A Translation Approach to Portable
Ontology Specifications. in: Knowledge Acquisition.
vol. 6, no. 2, 1993. pp199-221

[9]1 N. F. Noy and D. L. McGuinness, “Ontology
Development 101: A Guide to Creating Your First
Ontology™.

[10]Y. Diao, H. Zhang and M. J. Franklin, “NFA-
based Filtering for Efficient and Scalable XML
Routing™.

119

[11] O. Corby, R. Dieng-Kuntz, C. Faron-Zucker and
F. Gandon, “Ontology-based Approximate Query
Processing for Searching the Semantic Web with
Corese™, INRIA, July 2005.

[13]1 T. S. Li, T. Han and G N. Chen, “XML Query
based on Ontology”, IEEE Intelligent Informatics
Bulletin vol.6 No.2, Nov 2005.

[14] S. Boag, D. Chamberlin, M. F. Fernandez, D.
Florescu, J. Robie, and J. Siméon. XQuery 1.0: An
XML Query Language W3C Working Draft.
Technical Report WD-xquery-20050404, World
Wide Web Consortium.

[15] D. Megginson. SAX: A Free API for Event-
based XML Parsing. Available:
http://www saxproject.org, 2005.

[16] BLIP XML records. http://dblp.uni-trier.de/xmV/
http://www.acm.org/sigmod/dblp/db/about/dblp.dtd

[17] S. Chen, H. G. Li and J. Tatemura, GFilter:
“Scalable Filtering of Multiple Generalized-Tree-
Pattern Queries over XML Streams”, IEEE
Transactions on Knowledge and Data Engineering
2008.

